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PREFACE i

The research contained in this report was begun by Professor

Franceschetti in the Spring of 1976, and a presentation of some

preliminary results was given by him at the National Conference

on Electromagnetic Scattering held in Chicago in June 1976 (see

Communications Laboratory Report T6-1).

This work was initially supported by the Air Force Office of
Scientific Research under grants AFOSR-T2-2263 and AFOSR-T6-2888;
it has been completed under grant AFOSR-77-3253 (Program Manager:
Dr. Robert N. Buchal/NM). The manuscript was typed by Ms. Annalisa

Fugali-Shield.

March 1977. Piergiorgio L.E. Uslenghi

Director of the Laboratory

“ Acoustica, Electromagnetics, Optics - Circuits and Networks
' s MAmemminiaaron Thannu and Quarama - Elactranie Davicaa
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ABSTRACT

A new formulation for radiation from open-ended guiding structures
is presented. The differences between this formulation and conventional
physical optics or diffraction ray theory is discussed. The theory has
quite general validity and is here applied in detail to open-ended trans-
mission lines, coaxial cables, parallel plate waveguides and circular wave-
guides. For the examples discussed, checking with existing solutions is

provided. Finally, the theory is extended to the case of flared open-

ended guides.




CHAPTER 1 4

THE PROBLEM | 8

Radiation from apertures is certainly important from the application's
viewpoint. In this paper radiation from open-ended guiding structures,
as waveguides, coaxial-cables and horns, is considered. The classical way of
analysis is based on the so-called aperture methed [1] which uses the phy-
sical optics approach coupled with Kirchhoff's approximation. More recently,
optical or quaAL-opticaf techniques have been applied, decomposing the wave
inside the guide into a set of plane waves and then considering the scattering
of these plane waves by the edges of the guide. The basic idea is to model
the latter problem as the scattering of a plane wave by a metal half-plane.
These ideas and tools have been applied to the analysis of reflection inside
[2=7], and radiation from the guide [8-17]. A different model has also been
suggested for the anaiysis of the scattering process: a half-plane over either
an electric or a magnetic infinite wall [18-19]. It is also important to
recognize that exact solutions to the radiation problem are available in a
limited number of cases: the parallel-plate and cylindrical waveguides [20],
the latter with either azymutally symmetric or asymmetric excitation. The
scattering by two half-planes has also been considered [21].

The aperture method has well known limitations and shortcomings. 1t i

w

reasonably simple only when the scalar approximation is adopted; the vector
theory, however, yields only marginal improvements [11].

The quasi-optical approach seems to give good results. At transitional
regions, e.g., at lit-shadow boundaries, the expression of the diffraction
coefficient becomes rather involved [22, 23]. In the caustic regions, either

fictitious equivalent edge currents [24] or a spectral theory [25] should be
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adopted; the latter is also useful, if not necessary, for non-planar exci-

tation. In the case of multiple reflections, as always happens ror apertures,

the analysis although straightforward in principle, is extremely cumbersome

in practice.

o

There is, however, at least another possibility for computing radiation

from open-ended guiding structures. Probably the best way to introduce the

basic philosophy of the new method is to consider a wire antenna with sinu-
soidal current distribution Io sinBa: (see Fig. 1) and a time dependence

exp(iwt). The far-field phasors can be easily computed, the result being:

I sin@® A icos0@ cosOsinB 1l +cosO cosB 1
E=2¢ =0 exp(-iBr) = + exp(-iBcosd) 2 2 1)
hmr cos?0 - cos?0 cos?0@ - cos?0
a a
H=LE4A> L =fu/e B = w\eu el
— S0 . s R

>

N
)

1

Fig. 1. Radiation from a wire antenna.




where 8 =B“me
:

<

Eq. (1.1) suggests this model for the radiation process: the far-field
is given as the superposition of two spherical waves from the end-points
z =0; -1. of the antenna. For a wire infinitely long in the -z direction

the second term in the bracket of (1.1) can be neglected, and we have:

I. sinOcos® exp(-ifr)

B, =7 =— = (1.3)
(€] nr cosO + cosOa cos@ - cosOa *
H¢ = Ee/c (b

where Ii = - IO/2i is the amplitude of the Lncddent cwwrent. Note that the
electromagnetic field (1.3-L) can be conveniently derived from a vector po-
tential

I 1 cos0 exp(-iBr)

. s A

A= -r 2 = 2 (1.5)

-iw 27mr cosO + cosOa cosO - cosOa
wherein the connection with far-fields is given by
§=dw?x§x? (1.6)
£=-%2?xf\_ LT )

For a two-wire transmission line--the simplest conceivable guiding struc-
ture—,TEMassumption for the incident wave (Oa = 0), hypothesis of no higher

order interaction between the two wires, and superposition give (see Fig. 2):

I exp(-iBr) exp(iBasinOcos¢d) - exp(-iRasinOcosd)

| >
n
Y
L~

-iw onr 1 - sin®Osin?y
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Fig. 2. Radiation from a Lwo-wire transmission line.

Note that Lhe fiecld is everywhere well-behaved. In particular the (normaliszed)

radiation diagram is given by:

sin(Bacosd)

E-plane (0 = 90°) : ———— (1.5)
Bacosd
H-plane (¢ = 0) : sin(BasinO) (1.6)

The nadiation process is modelled as two Apherical waves §rom the two end-
points of the thansmission €ine. This model has a simple physical counter-
part in time-domain when a pulsed voltage is propagating along the transmis-

sion line. The local charges induced on the two curves ( apparently) move




with constant velocity and radiation takes place only at the very end of &
che line where charpes are reflected with o (discontinuous) change ot velo-
city direction. This idea has been exploited in [20]. Note further, ror
future reference, that the fields individually radiated by each wire di-
verge in the direction © = 0, i.e., the direction of the incident wave. f
However, due to the dispersion equation of the line, cosOa = 1, the two
fields compensate and produce a finite result along O = O,

For an open-ended guiding structure we will have surface currents inci-
dent on the truncated rim of the guide. Accordingly, the aadiation phocess ‘
can be modelled as superposition of elemetary spherical waves coming grom |
each point of the nim. Obviously, a satisfactory theory should take into
account interaction between incident surface currents. We will derive ra-
diation coefficients associated with incident surface currents from the sim-
plest possible canonical problem for which an exact solution exists: the

parallel-plate open-ended waveguide.

It is important to recognize the profound difference between this ap-
proach and the quasi-optical one. The latter emphasizing the geometrical
relationship between field-point and rim-point, so that the radiated field
is due to a finite number of contributions along the rim (except in caustic
regions where, in any case, the quasi-optical approach fails to give a satis-
factory answer). On the contrary, this new approach is still based on a
field theory rather than a ray theory and the radiation is computed as an
integral along the truncated rim. Accordingly, as long as the radiation
coefficients are well-behaved, no problem can be anticipated for the compu-
ted field everywhere. Tt is here noted that this method has nothing to do
with the equivalent edge current procedure [24], which is still based on a
ray-theory model and makes reference to fictitious electric and magnetic cur-

rents.
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CHAPTER 2

RELEVANT FORMULAS AND EXPANSIOHNS

For the reader's convenience, most of the mathematical formulas used
in the next sections are collected below.

Weinstein's difgraction function, exact [27].

Definition:
s 2
; e (= 2) (1 - 1B 2
U (o, p) = — In[1 + exp(-ip - pu?)] T I du
2mi u(1 - 15) -—2—0
Properties:
U't (-0’ D) = "Ui(oa p)
+ 1 :
U=(+0, p) = + 5 In[ 1 # exp(-ip)]
Expansion for large O and p:
+ —exp(-im/k) (1) exp(-inp) -3 -3/2]
U=(o, p) = — 375 +0 [o 3O Sie
12wp o n n’°
1
Expansion for small p:
1 ipo .
utio, p) = -2-1n[1 + exp(-ip)] + —— [1n %’)1 +1 -y - —%1-] + 0 [po]
2m
- - mi ipo L i
U (o, p) = 5 1n[pll +0)] + = -5 [1n'p— * 1= v == +0 [pc]

Weinstein's difgraction function, approximated [20, 27].

For large p the main contribution to the integral (2.1) arises from

(2.

(2.

.2)

3)

L)

+5)

b




the vicinity of the saddle point u = 0. Thus, neglecting all terms of order

u? [27]:

+00

2mi

\ = (0, p) = _! [ 1n[1 + exp(-ip - pu?)] —‘Td"'_li—— (2.6) |

-0
¢ + = ‘
£ The difference between UL and W is of O[lp 1] uniformly over the range !

+
= <9 = 1.Letting p = 2nq and yp 0 = s (and using the same symbol U—):

400

2 )
v(s, a) = 51:1 [ Il 7 #+ exp(-2miq ~ 5 )] iu— R (2.7) |

-
which is the expression given in [20]. Tables of (the complex conjugate of)
U are referred to in [20, 28].

Properties: t

Same as (2.2-3) i

Ui(s, q+n) = U:{s, q) (2.8)

u(s, q) = UT(s, q + %) (2.9) ;

Expansion for large s:

exp(=im/k) = (2m - 1)1 :i: exp(-2ming)

. | U (s, q) = - ————— —_— B ——
i or - s om [sexp(-in/h]zm on o 3/2
exp(=in/L) exp(=2minq) -3
= - E 3/0 + 0 [s7°] (2.10)
2m s

Expansion for small s and q:

s, q) = 151n2 +0 [s] (2.11)
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9
= 1 ' —
U (::, (]) S F(In}’ - lll‘-) + In(s + \l)n'nq) + 0 [:‘.] Sl
Hanket Func tions
S (2) . I 1 o
UO(X)---TT arg[Ho (X)] k. -L-- a‘;'* (t.lﬁ)
o (2) b T 3
Ty(x) = —arg[H, " (x)] + =2+ T (2.14)
- 1 (2) 1 om + 1 : 1
o = - ;arg[}{m (x)] = = = e 5 o A (2.15)
ot (2) 1 1 2 1 m? L
LT T arg[H “'(x)] + - Fl fx = m; 7+ 2 gx3/ - (2.16)
Integhals
i
2i f sin(xcos¢)cosd dp = eniJ,(x) (2.27)
0
m
2 f cos(xcosd) dp = 27TJO(x) Geduly
0
2K - om
/ lexp(ixcost) + (=) exp(-ixcost)] exp(imE) & = f exp(ixcosE )exp(imé )as
0 0
= 2Trime(x) (2.19)
T
f [exp(ixcosg) - (-)"exp(-ixcost)] exp(im )cosEdE =
0
om d (x) = J (x)
f exp(ixcost )exp(imé )eosEdt = oni™ ¥ ' Bl S At =
0
- o N e
= 214 Jr Exy (2.20)




m
f [exp(ixcos&) - (=)"exp(-ixcos&)lexp(imf)sinfde =

0
2m
J (x) +J (x)
J ot
f exp(ixcosE)exp(imé)singde = omi™ B + : m
0
mJ (x)
= 2mi 2
L =8 leosidl (G _u= WX © B
cos( - uy)dy = = |cos C (L - 22y 4 g S ( £ -
2&2 (3 27[{)2 c 2n£‘2
—E;, u’a? ’ 2
fSin(ﬂ 2 - uy)dy = E_ COS\J a S (g-aL . %‘i) P uoe S (é-aL

where ((x),

S(x) are the Fresnel's integrals.

Fresnel integnals and auxiliany §unction

Ct) = + [g'+ £(t) sinzéi
S(t) = i_[% - f(t) coslgi -

- g(t)

casZi]
2

2
g(t) sinﬂg—]

L

EEJ

ua
mE

]

o 8.
&

where f(t) and g(t) are the so called auxiliary functions, and plus and minus

signs apply to positive and negative values of t respectively.

£r(t) = - mg(t)

For t + 0O+

2

oty
f‘(t)-2-ht+...
For t = 4w

]

3¢5

i
f(t)= " - L

f(-t) = f(t)

g'(t) = nte(t) =1
g(t) =—’—t B Eeh
2
gltlx = - 1y
mt 3 we’
gl=t) = g(t)

n

(2.

.29)
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CHAPTER 3
WEINSTEIN'S SOLUTION KFOR THE PARALLEL PLATE OPEN-ENDED WAVEGUIDE
The problem of radiation from an open-ended parallel plate waveguide -

has been rigorously solved by Weinstein in 1948, (results are referred to

in [20], Ch.1), and independently by Heins [29], essentially by applying
Wiener-Hopf techniques. Solutions to this problem (and also to the case of

a circular waveguide) are referred to in a number of books [30-33]. Here-

(+)

after, Weinstein's solution is summarized with reference to Fig. 3. 1In

addition, only far-fields and -n/2 < ¢ :1r/2(6n0nt space) are considered,

| where the latter condition can easily be relaxed.

0 Ple,®

o

Fig. 3. Radiation from an open-ended parallel plate waveguide.

T

(+)Note that in the original Weinstein's solution [20] (i) the assumed time
dependence is exp(-iwt), (ii) the z-axis is pointing toward the waveguide,
(iii) the unit system is the gaussian one and (iv) symbols are slightly
different from those here adopted.




For an incident TEnO wave (no x-variation) the fields can be derivea,

via (1.6-T), from a vector potential A = AX where: (3

for n odd: 3
i &J exp[-i(Bp + m/4)] cos%- cos(Basing) e ok e '1
o {5;551 cosgf. cos$¢ ~ cosdp 5 y '
for n even:
icg expl-i(Bp + m/4)] cosd  sin(Basing)
A= = exp(U” - U7) (3.2)

2
w ¢n
V2ﬂBp cos—5 cosd - cos¢n

In (3.1-2) the angle ¢n is related to the waveguide propagation constant Bn by :

™
|

/8% - (an/2a)? = Beost (3.3)

d " Jni in the 4ncdident sunface cwrrent at z = O related to the incident

electric field at 2 = 0, E =E Q,by:
= o

Eosin¢
J =218 5 lower rim, (3.4)
n
9z
(-)n+,E sin¢
Jn = 2 , upper rim, (3.5)
J5

S
U—(s, q) is the Weinstein diffraction function (2.7):

(s, q) = 14 (YeBacos¢, %% ¥ oy (3.6)
and
U= (s, q) = U= (VQBacoS¢n‘ 77) (3.7)




Results (3.1-2) are approximated only  because the approximate ex-

pression (2.7) for UL has been used. They become exact if the exact expres-
sion (2.1) is adopted with O = cosp, p = 2Ba. However, ever for moderate
value of Ba, the difference between the two formulations is negligible save
in the neighbors of |¢| = m/2, where it remains small.

For an incident TMno wave, the fields can be derived from a vector po-

tential A = AZ where:

for n odd:
%
cJ exp[-i(Bp + m/4)] cos =— cos(Basing)
A=—= f exp(u’ - u") (3.8)
- {2w8p cos 3 cos¢p - cos¢n ¥
for n even:
. . ey . ’
g exp[-i(Bp + m/k)] cos — sin(Basing)
e = e f exp(U:1 -U7) (3.9)
q2ﬂ8p cos 3 cosp - cos¢n
where U~ is again given by (3.6) and the incident surface cunnent_gn = Jnﬁ
at z = 0 1is related to the incident magnetic field at z = 0, H = Hé?, by:
g, - H_, upper rim (3.10)
+1
Jr & (<Y B , lower rim {3.11)
Solutions (3.1, 2, 8, 9) deserve a comment. For Ba large, use of (2.10)
shows that:
exp[UZ - U*] = 1 + of 1/{Ba] (3.12)

\ccordingly, the left-hand side of (3.12) is an Anteraction factor which
approaches unity when the spacing between the two plates is large.

Let us momentarily neglect this factor. It is immediately recognized

that the fields are proportional to:




exp[-i(Bp + m'k)] cos% exp(-iBp') + exp(-iBp")

'''' i by |
VQNBD cos = cosd - w\;u}\n s
for the TE case, and to

exp[-i(Bp + m/4)] ¢ exp(iBp') + exp(-iBp")

—— cos - sin % (3.14) ‘
\[Eﬁﬁp cosd -~ cos¢n :
for the ™ case. In (3.13-1L4), the plus sign applies to n odd and the minus
sign to n even. The total field is then obtained as the superposition of two
cylindrical waves coming from the upper and lower rim of the guide respectively. ;
When the expression for the incident current (3.4-5, 10-11) is taken into
1

account, the similarity between (3.13-14) and the metal half-plane scattering
problem [34] is immediately recognized. Fach constituent component of (3.13-1L4) I

coincides with the asymptotic evaluation of the field scattered by a metal

half-plane when the incident wave is plane, at an angle ¢n with the two rims
respectively and with polarization E = E R (TE case) or H = H, R (™ case).
This is obviously consistent with the splitting of the incident field in a
set of two plane waves at angles :¢n with respect to the z-axis. The above

similarity has been recognized from the beginning [20] and is the basis for

R et

all quasi-optical approaches to this problem. There is, however, a profound i
difference between the half-plane problem and the one at hand, and this has been
so far apparently overlooked. Each constituent term in (3.13-1L) diverges

at ¢ = ¢n (lit-shadow and lit-reflection boundaries respectively) while the
total g4ield does not. Consider, for instance, (3.1). When ¢ = ¢n then

Basin¢n = nm/2 and 1is the normalized eigenvalue of the parallel plate guide.

Accordingly,

cos(Basing) RBacos¢
lim e (1)) i, (3.15)
¢+¢n cos¢p - cos¢n 51n¢n
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|
|
|
|
|
{
and is finite. The reason for that is very basic and quite general. Consider 1
|
4

the sketch of Fig. 4 where ray tracing is depicted for the parallel plate [1
guide.

Fig. 4. Ray tracing inside a parallel-plate waveguide.

Foints C and E, as well as G and F, are on an equiphase surface: accordingly,
the phase delay along the two paths GHIC and FE should differ of an integer
number of 2m (consistency nelationship, the optical analog of field dispersion
equation). Consider now the phase delay along the two paths CBP and EDAP. The
phase introduced by the scattering process at A and L does not depend on the

angle, so that it is equal for the two paths. However, the usal phase delay




o h g A AN = S .

of mat A (due to the reflection) is now missed, since the reflection co-
efficient is substituted by a scattering coefficient. Accordingly, the
two ray contributions at P from L and A are opposite in phase.

The following conclusion can be drawn. For the half-plane diffraction
problem, the spectral components of the scattered field display pole singu-

larity (in the wavenumber space) which approach the saddle point position

at lit-shadow, lit-reflection, so that the steepest descent method evaluation
(performed in the usual way) becomes invalid (resort should be made to the
Pauli-Clemmow modified steepest descent method of integration [35]). On
the contrary, these pole singularities cancel each other for the problem at
hand, so that the usual asymptotic form for the scattered field is valid
through all space.

The interaction factor (3.12) is now considered. Use of (2.10), valid

for 2Bacosd large, shows that:

> - exp[-i(2Ba + m/4)] cosd - cosd E exp(=-i2nRa)
exp(U- - U=) = T + L ()" ——
n ! [ )5/._

V 4mRa cos¢cos¢n (n +1

0

+ 0 [1/3a] (3.16)




When (3.16) is substituted into (3.1-2, 8<9) an extra term appears for the
vector potential A. This new term can be easily constructed using the model
of interaction process depicted in Fig. 5  (s4ngle (nteraction), The ray
along BC explains the term n = O of the series in (3.16); and the remaining
terms of the series are due to the nonuniform illumination of the edge. For
future reference it is important to recognized that 2mq = 2Ba takes care of
the phase delay of the ray path between the two edges.

When 2Ba is small, use of (2.4-5) shows that:

AR (U;'UJ'):' Y (3.17)
¢n
- - cos )
exp (U -U ) = ——— (3.18)
n ]
cOos

)

oY

Fig. 5. Ray optical description of the interaction process.
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CHAPTER k4

THE ELEMENTARY SCATTERING COEFFICIENTS

The field radiated by an open-ended parallel-plate waveguide has
been represented, according to Weinstein's theory, as the superposition
of cylindnical waves from the rims of the guide. The main idea is now to i
represent each cylindrical wave as superposition of efementary spherical
waves radiated at each point along the rim. This goal can be accomplished

by noting that, asymptotically as Bp *> *«, ‘

400

exp[-i(Bp + m/L)] exp(-iB \Ip *E %) |
-2miF(0) o F(E) (L.1) |

\[21160 \15
-0

Here p is identified with p' (p") in (3.1-2, 8-9), £ with a curvilinear
coordinate along the upper (lower) rim of the parallel-plate waveguide,
sz + EZ = r is the radial distance from rim point to field point and F(0) |
can be immediately obtained by inspection from (3.1-2, 8-9). \

The next step is the determination of F(§), which should coincide with

F(0) times an arbitrary factor which reduces to zero as &*0. This factor,
in general, will not play an important role when applications are made to

ﬁange apertures. As a matter of fact, superposition of elementary radiation

——— e
SR e g

from the rim of the aperture will result in an integral, and in the asymptotic -

evaluation of such integral the above factor is unimportant. Only the 3

(cos¢n - cosd) term appearing in the denominator of (3.1-2, 8-9) should be

g

handled with care to avoid a singular behavior of the elementary scattering |
l{

coefficients which are going to be introduced.

As a conclusion, the following Andatz will be made.




e L T TR

Bler /G O

Consider an open ended waveguide uni{f§cam along the z-axis. Choose
two points Q, Q' on the rim of the waveguide such that
(i) the tangent planes to the waveguide walls at Q, Q' are parallel; their
distance is 2aj;
(ii) the incident surgace currents J,, J,, parallel and perpendicular to the
rim, have equal amplitude at (Q, Q') and either equal or opposite sign.
Then, with reference to Fig. 6, the following elementary vector potentials

are associated to the elementary currents d4J, = J,ds, dJ, = ds respectively:
oo gy P g

o

AZ

Fig. 6. Geometry of elementary radiation.
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ad, exp(-igr) cos Q’ exp(iBasinOsing) % exp(-iBasinOsing)

d/—\. = ([ —— 0 — — .

—-iw amr con —& \[l = :;]?(\;:i“?‘b' e (.‘,:-‘O'

+ +
exp(U— - U~ li.2)
Pl ) (
0

ad, exp(-ifr) cos z?— exp(iBasinOsing) + exp(-iBasinOsing)
d.A = C -
i i Sl T .y

-iw 27r cos = \f? - sin“Osin‘¢p = cosOg

exp (Ué - HE) (4.3)

In (4.2-3) the choice of plus or minus sign is related to equal or opposite sign

for the incident surface current at Q', Q"

respectively; the angle Og is
given by Bg = BcosOg, where Bg is the waveguide propagation constant. Note
that ?Basin@sind = |r' - r"| and that the elementary vector potentials (L.2-3)

are everywhere finite provided that the dispersion relation

exp(iBasinOg) + exp(-iBasinOg) =@ (k. b)

is valid.
It is obvious that application of (4.2-3) to the case of a parallel
plate waveguide using the asymptotic evaluation (4.1) of the superposition

integral gives (3.1-2) and (3.8-9), respectively.




CHAPTER 5

Ore

RADIATION FROM OPEN ENDED CIRCULAR WAVEGUIDE. AZYMUTEALLY SYMMETRIC MODWS. |

Consider now an open ended circular waveguide as depicted in Fig. 7.
The guide is excited by ¢- independent modes @zymuthally symmetric modes), !

an assumption which will be relaxed in Sect. O f

< 23 —)-{
i

Fig. 7. Radiation from an open=-ended circular waveguide.
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For a Il‘an incident. mode the surtace current incident. on the vim
(8
A ) : ] .
has only a vs=component.,, Jd = J v 3 the dispersion relation is:

J (k,a) =0 ; k = BsinO_ (5.1)
o & t g

the distances from Q', Q" to P are given by

r'= r - asin@cos(¢' - ¢) ;3 r"= r + asinOcos(¢d' - ¢) ; (5.2)
the appropriate elementary scattering coefficient is (4.3) with the plus

sign, since surface currents have the same sign at Q', Q". In conclusion,

the total vector potential A = A2 will be proportional to the following

integral:

G+
cos[BasinOcos(¢' -¢)]

ae'. (5.3)

\I"i- sin2®cosz(¢'—:“677- cosOg

¢
When BasinO is large the main contribution to the integral (5.3) comes from
integration points close to ¢' = ¢. When sinO<< ]/Ba and Ba is large, the
cosine term in the denominator of (5.3) does not play a significant role.
Accordingly, we can put ¢' =¢ only in the denominator of (5.3) and evaluate
the integral (5.3) with the aid of (2.18). When all terms are taken into

account, the final expression for the vector potential is:

0
o g L
CJZa exp(-iBr) cos—3 JO(Baoan) & i
L = = exp(U. - U) (5.4)
-iw er cos = cos@ = cos0O g

5

Note that the vector potential is everywhere finite in view of the dispersion
relation (5.1).

We still need to specify the values of s and q which appear in the
Weinstein function U (2.7). It has already been noted in Sec. 3 that 2mq
should equal the phase delay between interacting points on the edge, such as

Q' and Q". In this case of circular symmetry, the line Joining Q' and Q"

T——

-y

Eepy

7
§
|
\

I




intersects the axis of the guide, which is a caustic line. Accordingly,

+
the usual phase delay of m/L4 should be added, so that the values of U— to

be inserted into (5.4) are the following:

Ba - m/h
U+(s, a) U+(42Ba cogll, ==}

" Ba - m/k
0] (q28a cos@g,‘—_f;_——_)

%
Ug(s, q)

Expression (5.4) coincddes with the exact solution to the problem (20!,

+
with a minor modification in the q parameter of the function U . According

to Weinstein, the proper value of q to be inserted into (5.5-6) is:

Q= ;’,ﬂrg[Hée)(Ba)]

while in (5.5-6) we have:

Ba - m b
S
Use of (2.13) shows that the difference between (5.7) and {(5.8) is of order
1/8mBRa.

The TEno incident case can be similarly treated. The surface current

on the rim has only a ¢ component, J = J¢ $; the dispersion relation is:

J’(kta) =0 kt = 651nOg

The appropriate elementary scattering coefficient is (L.2) with the md{nus
sign, since surface currents have opposite signs at Q' and Q". The elemen-
tary vector potential dA due to the two rim elements ad¢ at Q', Q" can be
resolved into two components:

dA = dA cos(¢' - ¢)d - dAsin(¢' -0)d x 2,

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

parallel and normal to Qﬁ respectively. It is readily seen that the integral

of the latter component is equal to zero, while the integral of the former

il




gives for the total vector potential A= A$

J¢u exp(-igr) uosg J,(Bu sinQ) o 4
A= -iL 5 exp(U_ - U7) (5.11)
-iw 2r cos—= cosO - cos0 &
2 3 1
)
Note that the vector potential is everywhere finite due to the dispersion 1
{
|
relation (5.9). The function U should be computed for the same value (5.8) of Q. 'P
Expression (5.11) codncides with the exact solution to the problem [20], b

with the only minor modification:

q= - % arg[ng)(Ba)] (5.12)

Use of (2.14) shows that the difference between (5.12) and (5.8) is of order

3/81Ra.




CHAPTER 6
RADIATION FROM OPEN-ENDED CIRCULAR WAVEGUIDES CONTINUED:

AZYMUTHALLY ASYMMETRIC MODES

Radiation from an open-ended circular waveguide is now considered with

TEnm or 'I‘Mnm excitation, wherein the ¢-dependence of the fields inside the

waveguide is of type exp(im¢). The analysis is more involved, although the

procedure parallels that for TEno or TMno excitation.

First, TEnm mode excitation 1is considered, wherein the surface current

incident on the rim, J exp(im¢), is:

. % meosE
1=J¢¢ +az az=_———L Iy > (6.1)
Basin?Q@
g
and the dispersion relation is:
P fkal=0, K = BsinO, . (6.2)

The component JZ of the incident surface current produces a vector po-

tential, A; = A,g, which can be computed by using (4.3), (5.2) and (2.19):

0
2 CJYa exp(-iBr) cos—%— Jm(BasinO) & "
Ap =i - — exp(im¢) exp(U - U ) (6.3)
i ) g
-iw 2 cCoOsS— cos@ - cos0O
2 g
where
Ba - M/ - mm/2
+ +
Us, q) = U (dQBa cos0, ) (6.4)
T
Note the expression of q in (6.4). The term =~ m/L accounts for the phase

delay at the caustic line crossing on the axis of the guide. The extra term

mm/2 takes into account the equal (m even) or opposite (m odd) sign of J,
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at Q', Q" (see Fig. T), as follows upon use of (2.8-9).

For the vector potential AQ = Aé$ - Ag@ x z associated to the component

J. we have, upon use of (4.2), (5.2) and (2.20-21):

9
. 0 L :
A C{ba exp(-iBr) cos—- Jm(8a51n0) 5 "
AL = -1 5 exp(im$) —————— exp(Ug -U") (6.5)
-iw 2r cos—&— cos® - cosO
2 e
0
& CJ¢a exp(-iBr) cosy m J_(Basing) o -
A% == o exp(imé) - '3XP(U€g -u7)
-iw 2r c057§~ Basin® cosO - cos@g
(6.6)
e Ra - m/4 - mm/2
U (s, q) = U (Y2Ba cos0, = (6.7 )
The transverse components of the vector potential.AO and A¢, are given by:
A¢ = Aé 3 AO = Aé cosO - A, sin@ (6.8)
nt1 %8 exp(-iBr) cosg- Jr;l(BasinO) i ¥
8= =fc 5 exp(imp) ——————  exp(U_ - U") (6.9)
¢ -iw 2r cos:f cos@ - cosO g
g
: 0 :
v J¢a exp(-iBr) 2cos§- J (BasinO)
By = -1t 5 exp(imp) ——on— A (6.10)
-iw 2r sin-& sinO sin0®
2 g
= im (6.11)
ks 2Ba

where U~ is given by (6.7), use has been made of (6.1) and only terms up to
order A have been retained in (6.10).

Expressions (6.9-10) are now compared to the expansion of exact results
[20] up to terms of order A?included. The ¢-component of the exact vector po-

tential equals (6.9) times




m 2 1+ cos0 cosQ - cos0
Vs )..__. 0 £

k,a I + cosO 2

t

provided that in (6.7):

q=;’arg Hélz)'(sa) (6.12)

The O-commonent of the vector potential equals (6.10) times:

2 _ m 2
= A =1=% kta cos Og (

o\
.
-
()
—

Use of (2.16) shows that the difference between the two values of q is
small provided that Ra is even moderately large compared to unity. The
conclusion is drawn that use of efementary scatterning ccoefficdients (4.2-3)
Leads to good nesults provided that k,a >m and the excitation &5 TE.
Let us now turn to TMnm modes, for which the incident surface current
J exp(im$ ' has only a z- component, J = Jz,and the dispersion equation is:
Jm(kta) =0 - k.= BsinOg (6.14)
Then, use of (4.3), (5.2) and (2.19) will result in a vector potential

A = AZ given by (6.3):

I

A

AI ((‘.‘;"\

This vector potential will provide (EO, H ) fields only,according to (1.6=7),

)

while the exact solution [20] provides (EO, H,) and (E¢, HO) fields as well.

¢
Comparison only between electric fields is necessary, since H = E/T.

The exact expression for the EO field, up to terms A% included, is the

following:
; - exp(igr) . A X
LO = vl Ga.8 2r exp(im) exp(Ur -U')
e 0
costg- J (BasinO) cos= mJ (BasinO®) m
[ m s ¢ m ’
. 5in0 - 5 _— (6.106)
cosg cos0O = cos0 2cos==  Rasin0 Pa




- e :
where the argument q of the function U is given by

q = % arg[Hie)(Ba)] (6.17) y

As for the TE case, difference in the two values of gis negligible as shown

by (2.15).

—

The §inst team in (6.16) is exactly predicted. The second terum, which

is of onder (m/Ra)?, 48 not predicted =t all. This term is important only !

for m = 1 since , at variance with the other one, is different from zero

for © = 0. However, the ratio of the first term to the second equals:

2 2
2'3‘"‘)t = g (6.18)
‘e
& 3

for small values of O, so that the first term dominates for

AR
0> tg ,
Q)
2Ba : {0.19)
The exact expression for the unpredicted d-component of electric field
is, up to terms of order A,
- exp(-ifr) I (Basin®
E¢ = G N e exp(im¢) 5 A (6.20)
2r cos :?-cos g

The conclusion is drawn that, fox ™ exeitation, use of elementary scat-
terning coefficients (4.2-3) Leads to good nesults provided that Ra/m >> 1,
discrepancies with the exact expressions for the fields arise only in a very
small angular region centered at O = 0, for m = 7; and, in the case of linearly

polarized excitation, for the cross-polarized component of the field. A way

to overcome these inconveniences is given in section 9.
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RADTATION FROM OTHER OPEN-ENDED GUIDING STRUCTURES

Some other open-ended guiding structures will now be considered briefly.
The vector potential associated to an open-ended coaxLaf cabfe of outer
and inner diameters 2a,2b respectively can be easily computed using (4.3)

and Og = 0 for TEM excitation. The final result for A = AZ is the following:

-iBr 0 JO(BasinO) = Jo(BbsinO)

A et 8 cosg expll = U) e
-iw  2mr sin?0 7
W (s, o) = 0 (Ebaleost, Bii=tl (7.2)

2m
Note that O is the angle with the cable axis, I is the total incident current
and only interaction between inner and outer walls has been considered. When

Ba << 1 (small cable), eq. (7.1) transforms into:

2

i exp(-iBr) [-i@yfﬁs -
b r on

ey B exg(-iBr) 82

-iw 87m°r

%)

where S = m(b%2- a? )in the aperture area and use has been made of (3.18).
Equation (7.3) shows that the cable aperture is equivalent to a z-direc-
ted electric dipole of moment \EWSI/2m. This is the exact value which is com-
puted assuming only the electric field twice as big as the incident one) to
exist across the aperture and then applying the equivalence theorem [36].
For an open-ended stuip £ine of width 2b and conductor spacing 2a, the

.

E-flane field can be easily computed using (4.3), (1.6) and DF = 0 (TEM exci-

tation). The final result is the following:



Py T Y . S8 b S S =

3t

; 21 y 0 sin(Rasin0) — —
EO = il T exp(-iBr) cosz -«Hl%%ﬁﬁ¥l—— Pxp(lo = O
H¢ = Ey/ ¢ {1.5)
- N Ra
U (s, @F =0 ({QBa cos0, 7;) (7.6)

where I is the total incident current. Expressions (7.4-5) are consistent, in
the low frequency case, with application of the equivalence theorem, as in the
case of the coaxial cable.

Equations (7.4-5) do not depend on the strip width. Accordingly they
are valid also for an open-ended fwo-wire trhansmissicon Line.

The radiation from an open-ended rectangular waveguide can also be com-
puted. Results are in good agreement with experimental data. They are not
quoted hereafter only because some further assumption is necessary in the
scattering coefficients (L.2-3).

The coaxial cable, the strip and the two-wire transmission line are non-

ey
cora

vl
QlTig

+Y w

dispensive guiding structures, when excited under TEM conditions. A

0

a pulse is not distorted while propagating along these guides; they are the
simplest suitable pulse radiators. Transient radiation from these configu-
rations has been given in [26, 36] neglecting the interaction factor. Fourier

inversion of this factor in the time domain is necessary for a complete ana-

lysis of transient radiation properties of the structures previously analyzed.
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CHAPTER 8

THE INCLUSION OF A FLARE ANGLE (4

For the applications viewpoint, it is highly desirable to have scattering P
coefficients which can be applied to §fared open-ended guiding structures, |
such as a horn. Unfortunately, no exact solution exists for radiation from ,‘
a flared parallel-plate waveguide. However, there is a way to bypass this §
difficulty.

Consider the sketch of Fig. 8 where the terminal section of a flared | 3
parallel-plate waveguide is considered; let a be the flare angle. The field
distribution on the mouth z = 0 of the flared guide will be different from
that of an unflared parallel-plate guide with the same mouth dimension 2a
at z = 0. For small flare angles, however, this difference is just a phase

eUor due to a change in path length:

Fig. 8. Radiation from open-ended flared parallel-plate waveguide.
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r cosd _ a a cosd ’ a 1 V
cos6 |sina] T |sinajcos$

e (8.1)

where the only assuption used in the last derivaticn is that sinq <<1
Accordingly, the phase error across the mouth will be:
i y R a|51nai

A~ — £ (1 -—), £%=-SEH—u0u (8.2)

2 a’ m

A et | I AR

where Bg is the propagation constant in the flared guide and £ is a parameter

describing the flare.

The field in the half-space z > O can be represented as the inverse Fourier
transform (in wavenumier space) of the field distribution in the plsne z = 0.
We assume this field distribution to be coincident with the field distribution
relative to an unglared parallel plate guide (of mouth dimension 2a) £imes a
phase erron:

2
E2(1-L), -a< x<a (8.3)

Ad

(5
2

"

Ad

0 |x| > a (8.4)

Accordingly, the field for z > 0 and, in particular, the far field, will be
obtained as the convolutiocn of the (known) field radiated by the (unflared)
parallel plate waveguide and the Fowwien thansform the complex exponential
of (8.3=k):

-a a

- 1 . ’ ¥ s re Xz "ﬁ
Y = o f exp(iuy)dy + 57 / exp(iuy) expli = &° (1 - a2)] dy |

-—00 - {

PJI_—_Q

0

+—]—/ exp(iuy)dy (8.5)

a
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H
where u is the y-component ot spatial Crequency and cquals Bsing Bee Fip. ) 3
in real space.
Computation of' (8.5) is rather involved and requires the use of (2.20-25). :
The final result is the following: 4
a \sinua ] ua - ua - ’ 3
= 8(u) - = {m/—— - == |f(= - &) expliua) - f(= + &) exp(-iua 3
lli ( ) T - 215 TTE; > p( L ) (TTt,, ,) P\ u ) 8
t
1 ua, ua = i
- == — -f) exp(iua) - g(— +&) ex -iu (8.6) b
¢ g(ﬂg) ¢) exp(iua) g(,ﬂE ) p (-iua) (
When £ is small eq. (8.6) can be simplified by expanding the auxiliary
3 : 3 ) > - g A - |
functions f and g in the neighbors of ua/mE. Using (2.26) we get: '
a sinua ua ua . usa ua . N i
= §(u) - = |—/——— - cosua l- = (=) = i — (=) = &§(u) + ylu) 8.7)
b= s(u) -2 | 2 o) - 1 B2 | - su) + B (8.1
As a check, it can be noted that, for &£- 0, the last bracketed term in (8.7)
¥ 4 2 - £ A nA ‘o e 3 i = ~
reduces to =i{(m& /ua)®, upon use of (2.28). Accordingly, the second term of ;
<
8.7) is proportional to &2 and y reduces to a & - function for f= 0, as it 3
(8.7 prog ' = Ry ,
should be.
The new vector potential A, relative to the flared parallel plate wave-
guide, is given by:
+o0
+ 00
Atu) = f ['1(11'\ Al =~ u'ydu' = A(n) + / g(u')A(u = u')du’ £ |
1
- 00 - !
where the vector potential A relative to the unflared parallel plate system is
given by (3.1=2) and (3.8-9).
A}
Due to the discontinuous behavior (2.24-25) of the function f(t) and g(t). }
the range of the integral which appears in (8.8) should be split into the tw
parts (-, 0) and (0, »). For the latter we have, upon repeated integration 5

by parts and use of (2.26):
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0 o0

4 - : t ! ey t iA{na -~ ¢) i sint
) ./ w(u')a(u - u')du' = -{‘f [‘T‘ g (=) - 1 == f‘\T')] SSun - 218 Bt
f mé Wt me, weE, dt at t. |
! 0] 0 |
| & 17 t t L 1 d d sint

_F2 — —) o i el il B a - el sl 1 5 7 8.9
: > jo- [n{ “(m,) i 7 IGE ] Alua - t) & Tt =5 & (8.9)

Now, the bracketed term approaches -i and remains constant as t > 7€ as follows |
upon use of (2.28); there is no serious error in taking this term approximately ;
constant. Then, integration by parts of the first integral at right hand side 4

|

g of (8.9) gives:

i
B
00 (¢ 9] ;“
o dA [ d sint d A sint ]
b(u' = 'd'=+12—+"2f el o LN 8.10
'/o‘ v(u A - u')du & an T . T dt ‘at  t It 2 )
Now the rapidly varying part of A(ua - t) is of type exp(+it), when the aperture !
]
is large. Accordingly, d°A/dt?  -A and (8.10) transforms into: |3
@ o0 k
| g w25 A . sint= t cos ’
; f P(u')A(u - u')du' = +i£? =+ 1{,2/ : - 2B % A(ua - t)dt (8.11) ]
i 0 du 0 t .
When also the remaining range of the integral (8.8) is taken into account, we H
1 get:
.( o] 00 {3
= .2 dA e / sint - t cost ;
Al - 1 u'! = + 2418 by + & Alua - ‘\\ 5
—/O‘ Y(u')A(u - u')du 5 S i A " [ (ua ) |
| ¥
; -Alua + t)] dt (8.12)
Eq. (8.12) provides a way for computing the scattering coefficients analogous

to (4.2-3) and appropriate to the open ended flared waveguide.
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CHAPTER 9

CONCLUDING REMARKS , '

A new formulation has been presented for radiation from open-ended

guiding structures. It is essentially a field theory which calculates th=

? field as an integral over the rim of the guide. No problems of ray tracing,
or boundaries, or caustics arise. The theory can even be extended to open
: guides with a terminal flare angle. Although presented only for the front i
|
space, the formulation can be extended to the rear space. !
The key point of the theory is the canonical problem of a parallel-plate I
waveguide. It is not unexpected that when the theory is applied to structures
far from the canonical one, some discrepancies are found. This is, for example,
the case for a circular waveguide excited by azymuthally asymmetric modes,
where the incident field on the rim of the guide presents a ¢-variation with
no counterpart in the original canonical problem of a parallel plate waveguide. s
Obviously, we can take as basic canonical problem that of the circular wavegudde
with azymuthally asymmetric modes; and derive mote general, although more compli- L
cated, scatferning coefficients which would replace those of eqs. (L.2-3). 1In ¢
such a way the applicability of this new formulation would certainly be
enlarged at the expense of some formal complications.

Guiding structures which are worth analyzing are the corrugated circular

o odln

waveguide and the rectangular waveguide.

For the former, the different type of boundary conditions requires the

use of incident electric as well as magnetdic surface currents. A first rough

-~

way to handle the problem would be the use of scattering coefficients for the i

o ol

magnetic currents obtained from those of the electric one by duality. A

better approach would be to use the solution of scattering by a half-plane with




3¢

two different surface impedances (in the particularly suitable form [37]) to

model new scattering coefficients.

For the latter, the formulation just presented t'or the open-ended parallel-
plate waveguide is already able to give good results. However, the use of
diffenent dispersion relations for the E and H planes is necessary. This is
certainly a rather unsatisfactory point and is again due to the necessity of
handling & structure too different from the canonical one.

We believe that the limitations of this theory are nof intrinsic but
rather reflect its early stages. It is probably worth developing further this
novel formulation, which presents a simplicity and a number of attractive fea-

tures not available in current theories of high frequency radiation.
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